POINCARÉ AND SOBOLEV TYPE INEQUALITIES FOR WIDDER DERIVATIVES

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOBOLEV - POINCARÉ INEQUALITIES FOR p < 1

If Ω is a John domain (or certain more general domains), and |∇u| satisfies a certain mild condition, we show that u ∈ W 1,1 loc (Ω) satisfies a Sobolev-Poincaré inequality`R Ω |u − a| q ´ 1/q ≤ C `R Ω |∇u| p ´ 1/p for all 0 < p < 1, and appropriate q > 0. Our conclusion is new even when Ω is a ball.

متن کامل

Logarithmic Sobolev and Poincaré inequalities for the circular Cauchy distribution ∗

In this paper, we consider the circular Cauchy distribution μx on the unit circle S with index 0 ≤ |x| < 1 and we study the spectral gap and the optimal logarithmic Sobolev constant for μx, denoted respectively by λ1(μx) and CLS(μx). We prove that 1 1+|x| ≤ λ1(μx) ≤ 1 while CLS(μx) behaves like log(1 + 1 1−|x| ) as |x| → 1.

متن کامل

Discrete Sobolev-Poincaré Inequalities for Voronoi Finite Volume Approximations

We prove a discrete Sobolev-Poincaré inequality for functions with arbitrary boundary values on Voronoi finite volume meshes. We use Sobolev’s integral representation and estimate weakly singular integrals in the context of finite volumes. We establish the result for star shaped polyhedral domains and generalize it to the finite union of overlapping star shaped domains. In the appendix we prove...

متن کامل

On Friedrichs – Poincaré - type inequalities ✩

Friedrichsand Poincaré-type inequalities are important and widely used in the area of partial differential equations and numerical analysis. Most of their proofs appearing in references are the argument of reduction to absurdity. In this paper, we give direct proofs of Friedrichs-type inequalities in H 1(Ω) and Poincaré-type inequalities in some subspaces of W1,p(Ω). The dependencies of the ine...

متن کامل

From Poincaré to Logarithmic Sobolev Inequalities: A Gradient Flow Approach

We use the distances introduced in a previous joint paper to exhibit the gradient flow structure of some drift-diffusion equations for a wide class of entropy functionals. Functional inequalities obtained by the comparison of the entropy with the entropy production functional reflect the contraction properties of the flow. Our approach provides a unified framework for the study of the Kolmogoro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Demonstratio Mathematica

سال: 2009

ISSN: 2391-4661

DOI: 10.1515/dema-2009-0208